

****Published February 2026***

Gene therapies R&D targets review (CAT: VAMVG002)

Product Name	:	MarketVIEW: new gene therapies - WetAMD
Description	:	Global gene therapy commercial assessment
Contents	:	Executive presentation (~175 slides .pdf) + workbook(s) (.xls)
Therapeutic Area	:	Gene therapies
Publication date	:	February 2026
Catalogue No	:	VAMVG003

Background

Wet age-related macular degeneration (wet AMD) is a progressive eye disease in which abnormal, fragile blood vessels grow under the macula and leak fluid or blood, leading to irreversible central vision loss if not treated. In many patients, untreated wet AMD can progress to legal blindness within months to a few years.

WetAMD primarily affects older adults, with prevalence rising steeply with age. Recent analyses suggest that approximately 1 to 3% of individuals aged 75 years and older are affected, with hundreds of thousands of patients living with wet AMD in the US alone and substantial numbers of new diagnoses each year. As populations age, the overall burden of **AMD** is expected to increase further over the coming decades

The current standard of care for wet AMD is based on intravitreal **anti-VEGF therapies**. These often require 6 to 10 injections in the first year, followed by ongoing injections in subsequent years, resulting in a long-term treatment burden for patients. Beyond the risk of complications from frequent injections, this regimen places significant pressure on healthcare services and on patients and caregivers who must attend regular, time-consuming clinic visits. Despite intensive treatment, an estimated 25 to 35% of patients with more aggressive disease have partial or inadequate responses and remain at risk of progressive, irreversible vision loss.

Given these limitations, there is a strong unmet need for more durable, disease-modifying therapies. A broad R&D pipeline is investigating new molecular targets and innovative delivery technologies, including gene therapies designed to drive long-term intraocular expression of **anti-VEGF** or VEGF-targeting molecules thereby reducing or eliminating the need for repeated injections. Later-stage (pivotal Phase 3) AAV-based gene therapy candidates include **4D-150** (4D Molecular Therapeutics), **ABBV-RGX-314** (sura-vec, Regenxbio/AbbVie) and **ADVM-022** (ixo-vec, Adverum). These candidates have demonstrated meaningful reductions in annualized anti-VEGF injection burden in both treatment-naïve and heavily pre-treated populations. If successful in Phase 3 and regulatory review, could start to reach major markets from around 2028 onwards.

This **MarketVIEW** product is a product is a brand-new commercial opportunity assessment focused on the potential of emerging gene therapies for wet AMD through to 2040, across 10 major high-income developed markets*. It delivers a patient-based, interactive forecast model (.xls) and a comprehensive Executive presentation (~165 slides). All methodology and key assumptions are clearly documented, and the analysis incorporates four pricing case studies centred on the potential healthcare

Continued.....

by gene therapy versus the current standard of care. The product also includes an up-to-date review of disease background, epidemiology, the current **anti-VEGF** market and the evolving **R&D** landscape. This product is ideally suited to organisations seeking a detailed, forward-looking, global forecast for this emerging therapeutic class. It is particularly relevant for pharmaceutical and biotech companies, investors, and other stakeholders evaluating the strategic and commercial potential of gene therapies in wet AMD.

*US, Canada, UK, France, Germany, Italy, Spain, Japan, Australia and South Korea

Methodology

VacZine Analytics has closely monitored all significant source material pertaining to **Wet age-related macular degeneration (wet AMD)** in each respective market. Source materials used are academic literature articles, government websites, medical bodies and associations, conference proceedings, social media etc. Previously published research by **VacZine Analytics** in the field of gene therapies and retinal disorders.

PRODUCT CONTENTS:

Published February 2026 (CAT No: VAMVG003)

****This product is a [summary presentation \(pdf\)](#), [an MS-workbook \(.xls\)](#)

Contents – Summary presentation (.pdf)

Contents

Author's notes

Executive summary

[SECTION 1] Wet AMD and gene therapies: commercial model key outputs

[SECTION 2] Wet AMD: disease background and epidemiology

[SECTION 3] Wet AMD: disease management and treatment

[SECTION 4] Wet AMD: Wet AMD market for current treatments

[SECTION 5] Wet AMD: new treatments/R&D landscape and competitor activity

[SECTION 6] Wet AMD: forecasting new treatments for Wet AMD

References/bibliography

About **VacZine Analytics**

Disclaimer

SNAPSHOT

PAGES: >30 slides fully referenced/sourced. Available in .pdf form

Contents – MS-Excel workbook (.xls)

United States [5 target product profiles, public and private sector]

Canada

UK

France

Germany

Italy

Spain

Mexico

Australia, Japan, South Korea

PRODUCT COST:

VacZine Analytics will grant a [enter region] license to [enter client name], for the price of:

- FULL PRODUCT - USD \$**contact us** / GBP £**contact us**[#] (Global license only)*

*Global = North America, Europe or ROW (non-exclusive, non-transferable license)

For orders in the UK, VAT at 20% will be added to final invoice total

- indicative prevailing rate will be applied on date of transaction

HOW TO ORDER:

To order please contact your region account manager or order direct at orders@vaczine-analytics.com This report can also be purchased on-line. Please review the **TERMS and CONDITIONS** of purchase.

VacZine Analytics ® is a trading division of Assay Advantage Ltd, UK Company Number: 5807728

VacZine Analytics ® and the “spiral logo” are UK Registered Trademarks, 2009

BIBLIOGRAPHY

1. National Eye Institute. Eye conditions and diseases. Available at: <https://www.nei.nih.gov/eye-health-information/eye-conditions-and-diseases>. Accessed January 2026
2. Mayo Clinic Retinal Diseases. Available at: <https://www.mayoclinic.org/diseases-conditions/retinal-diseases/symptoms-causes/syc-20355825> Accessed January 2026
3. Ophthalmology: Navigating ocular barriers with advanced nanocarriers - Scientific Figure on ResearchGate. Available at: https://www.researchgate.net/figure/Structure-of-the-eye-Reprinted-under-the-terms-of-the-Creative-Commons-Attribution-30_fig1_383042687. Accessed January 2026
4. World Health Organization. (2023, August 9). Blindness and vision impairment (Fact sheet). Available at: <https://www.who.int/news-room/fact-sheets/detail/blindness-and-visual-impairment>. Accessed January 2026
5. Burton, M. J et al (2021). The Lancet Global Health Commission on Global Eye Health: Vision beyond 2020. *The Lancet Global Health*, 9(4), e489–e551. Available at: [https://doi.org/10.1016/S2214-109X\(20\)30488-5](https://doi.org/10.1016/S2214-109X(20)30488-5). Accessed January 2026
6. National Eye Institute. (2019, February 28). Eye conditions and diseases. U.S. National Institutes of Health. Available at: <https://www.nei.nih.gov/eye-health-information/eye-conditions-and-diseases>. Accessed January 2026
7. Centers for Disease Control and Prevention. (2025, July 1). Fast facts: Vision loss (Vision and Eye Health). U.S. Department of Health & Human Services. Available at: <https://www.cdc.gov/vision-health/data-research/vision-loss-facts/index.html>. Accessed January 2026
8. International Agency for the Prevention of Blindness. (2025, October 12). Global data – IAPB Vision Atlas. Available at: <https://visionatlas.iapb.org/global-data/>
9. National Eye Institute. (2025, December 11). Eye health data and statistics. U.S. National Institutes of Health. Available at: <https://www.nei.nih.gov/about/education-and-outreach/eye-health-data-and-statistics>. Accessed January 2026
10. Cleveland Clinic. (2025, December 10). Macula: What it is, anatomy & function. Available at: <https://my.clevelandclinic.org/health/body/23185-macula>. Accessed January 2026
11. Macular Society. (2024, December 31). What is the macula? Available at: <https://www.macularsociety.org/macular-disease/macula/>. Accessed January 2026
12. Kurtenbach, A., & Bopp, S. (2025). Clinical anatomy of the macula. *Survey of Ophthalmology*. Available at: <https://pmc.ncbi.nlm.nih.gov/articles/PMC12330045/>. Accessed January 2026
13. All About Vision. (2019, August 13). Macula lutea. Available at: <https://www.allaboutvision.com/eye-care/eye-anatomy/eye-structure/macula/>. Accessed January 2026
14. National Eye Institute. (2025, December 9). About the eye. U.S. National Institutes of Health. Available at: <https://www.nei.nih.gov/eye-health-information/healthy-vision/nei-for-kids/about-eye>. Accessed January 2026
15. American Society of Retina Specialists. (2022). Intravitreal injections. Available at: <https://www.asrs.org/patients/retinal-diseases/33/intravitreal-injections>. Accessed January 2026
16. Cheung, C. M. G et al. (2024). Wet age-related macular degeneration. In *StatPearls*. StatPearls Publishing.
17. Wilkinson-Berka, J. L et al. (2020). Diabetic retinopathy and diabetic macular edema. *BMJ Open Ophthalmology*, 5(1), e000487. Available at: <https://bmjopen.bmjjournals.org/content/5/1/e000487>. Accessed January 2026
18. Campochiaro, P. A et al (2023). Anti-vascular endothelial growth factor dosing frequency and visual outcomes in retinal vein occlusion. *Eye*, 37, 1–9. Available at: <https://www.nature.com/articles/s41433-023-02527-7>. Accessed January 2026
19. Neri, P et al. (2008). Anti-vascular endothelial growth factor indications in ocular disease. *Middle East African Journal of Ophthalmology*, 15(3), 111–119. Available at: <https://pmc.ncbi.nlm.nih.gov/articles/PMC5712945/>. Accessed January 2026
20. Korva-Gurung I et al. Incidence and prevalence of neovascular age-related macular degeneration: 15-year epidemiological study in a population-based cohort in Finland. *Ann Med*. 2023 Dec;55(1):2222545
21. Creuzot-Garcher CP et al. Incidence and Prevalence of Neovascular Age-Related Macular Degeneration in France between 2008 and 2018: The LANDSCAPE Study. *Ophthalmol Sci*. 2022 Jan 22;2(1):100114
22. Kong H, Feng H and Wang H (2025) Global burden of age-related macular degeneration (1990–2021): trends, age-sex disparities, and socioeconomic dynamics from the GBD study. *Front. Public Health*. 13:1594672
23. Lee R et al. Epidemiology of diabetic retinopathy, diabetic macular edema and related vision loss. *Eye Vis (Lond)*. 2015 Sep 30;2:17.
24. Liew G et al. Profile of a population-based diabetic macular oedema study: the Liverpool Eye and Diabetes Study (Sydney) *BMJ Open* 2019;9:e021884
25. Song P et al. Global epidemiology of retinal vein occlusion: a systematic review and meta-analysis of prevalence, incidence, and risk factors. *J Glob Health*. 2019 Jun;9(1):010427
26. Kohli P et al. Macular Edema. [Updated 2024 Apr 24]. In: *StatPearls* [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan-. Available from: <https://www.ncbi.nlm.nih.gov/books/NBK576396/>. Accessed January 2026
27. Cheung, C. M. G et al. (2024). Wet age-related macular degeneration. In *StatPearls*. StatPearls Publishing. Available at: <https://www.ncbi.nlm.nih.gov/books/NBK572147/>
28. Macular Society. (2024, September 30). Wet age-related macular degeneration (AMD). Available at: <https://www.macularsociety.org/macular-disease/macular-conditions/wet-age-related-macular-degeneration/>. Accessed January 2026

29. Mayo Clinic Staff. (2024, December 10). Wet macular degeneration: Symptoms and causes. Mayo Clinic. Available at: <https://www.mayoclinic.org/diseases-conditions/wet-macular-degeneration/symptoms-causes/syc-20351107>. Accessed January 2026
30. American Journal of Managed Care. (2022, February 8). Overview of wet age-related macular degeneration. Available at: <https://www.ajmc.com/view/overview-of-wet-age-related-macular-degeneration>. Accessed January 2026
31. Whitstable Medical Practice. (2023, December 31). Wet age-related macular degeneration (Wet AMD). Available at: <https://www.whitstablemedicalpractice.co.uk/wet-age-related-macular-degeneration> Accessed January 2026
32. NHS. (2025, January 30). Age-related macular degeneration (AMD). National Health Service. Available at: <https://www.nhs.uk/conditions/age-related-macular-degeneration-amd/>. Accessed January 2026
33. Dervenis N et al. Neovascular age-related macular degeneration: disease pathogenesis and current state of molecular biomarkers predicting treatment response—a scoping review. *BMJ Open Ophthalmology*. 2024;9:e001516. Available at: <https://doi.org/10.1136/bmjophth-2023-001516>. Accessed January 2026
34. Cheung, C.M.G. Macular neovascularization and polypoidal choroidal vasculopathy: phenotypic variations, pathogenic mechanisms and implications in management. *Eye* 38, 659–667 (2024). Available at: <https://doi.org/10.1038/s41433-023-02764-w>. Accessed January 2026
35. Cincinelli, M. V., et al. (2022). Vascular analysis of type 1, 2, and 3 macular neovascularization in neovascular age-related macular degeneration. *Scientific Reports*, 12, 4567.
36. Spaide, RF et al. (2020). Consensus nomenclature for reporting neovascular age-related macular degeneration data: Consensus on neovascular age-related macular degeneration nomenclature. *Retina*, 40(1), 1–9
37. Iida, T et al. (2024). Neovascular age-related macular degeneration. *BMJ Open Ophthalmology*, 9(1), e001516.
38. Hsu, ST et al. (2019). Predictors of neovascular activity during neovascular age-related macular degeneration treatment. *Scientific Reports*, 9, 18750
39. Leung DW et al. Vascular endothelial growth factor is a secreted angiogenic mitogen. *Science*. 1989;246:1306–1309. doi: 10.1126/science.2479986.
40. Hobbs SD et al. Wet Age-Related Macular Degeneration (AMD) [Updated 2024 Aug 11]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan
41. Homayouni M. Vascular endothelial growth factors and their inhibitors in ocular neovascular disorders. *J Ophthalmic Vis Res*. 2009 Apr;4(2):105-14. PMID: 23198057; PMCID: PMC3498546
42. Shahidatul-Adha, M et al. Evaluation of vascular endothelial growth factor (VEGF) level in the tears and serum of age-related macular degeneration patients. *Sci Rep* 12, 4423 (2022)
43. Thurston G et al. The complex role of angiopoietin-2 in the angiopoietin-tie signaling pathway. *Cold Spring Harb Perspect Med*. 2012 Sep 1;2(9):a006550.
44. Jousson AM et al. Angiopoietin/Tie2 signalling and its role in retinal and choroidal vascular diseases: a review of preclinical data. *Eye* 35, 1305–1316 (2021).
45. Chaudhary V et al. Emerging clinical evidence of a dual role for Ang-2 and VEGF-A blockade with faricimab in retinal diseases. *Graefes Arch Clin Exp Ophthalmol*. 2025 May;263(5):1239-1248
46. National Institute for Health Care Excellence. Age-related macular degeneration. Available at: <https://www.nice.org.uk/guidance/ng82/chapter/recommendations>. Accessed January 2026
47. American Academy of Ophthalmology. (2025). Age-related macular degeneration preferred practice pattern. *Ophthalmology*. Available at: <https://pubmed.ncbi.nlm.nih.gov/39918524>. Accessed January 2026
48. BMJ Best Practice. (2024, May 28). Age-related macular degeneration. Available at: <https://bestpractice.bmj.com/topics/en-gb/554>. Accessed January 2026
49. Solomon, S. D et al. (2023). Anti-vascular endothelial growth factor drugs for age-related macular degeneration. In *Comparative Effectiveness Reviews*. Agency for Healthcare Research and Quality
50. Hao Q et al. Anti-Vascular Endothelial Growth Factor Drugs for Age-Related Macular Degeneration: CADTH Health Technology Review [Internet]. Ottawa (ON): Canadian Agency for Drugs and Technologies in Health; 2023 Oct. Available at: <https://www.ncbi.nlm.nih.gov/books/NBK598219/>. Accessed January 2026
51. Cheng S et al. (2024) Treatment of neovascular age-related macular degeneration with anti-vascular endothelial growth factor drugs: progress from mechanisms to clinical applications. *Front. Med*. 11:1411278
52. Penha FM et al. Review of real-world evidence of dual inhibition of VEGF-A and ANG-2 with faricimab in NAMD and DME. *Int J Retina Vitreous*. 2024 Jan 17;10(1):5.
53. Stewart MW (2023). Intravitreal anti-vascular endothelial growth factor therapies for neovascular age-related macular degeneration: Focus on pharmacologic properties and treatment regimens. *Clinical Ophthalmology*, 17, 1887–1906
54. Hussain, RM et al. (2026). Clinical trial designs in wet age-related macular degeneration: A brief review. *Retina Today*. Available at: <https://retinatoday.com/articles/2023-may-june/clinical-trial-designs-in-wet-amd-a-brief-review>. Accessed January 2026
55. Avery, RL et al. (2024). The current landscape of intravitreal treatments for neovascular AMD. *Retinal Physician*. Available at: <https://retinalphysician.com/issues/2022/april/the-current-landscape-of-intravitreal-treatments-for-neovascular-amd/>. Accessed January 2026
56. Lucentis (ranibizumab) [prescribing information]. (2020). Genentech, Inc. (Summarized in: Real-world injection frequency and cost of ranibizumab and aflibercept.) *Journal of Managed Care & Specialty Pharmacy*, 26(2), 229–238. Available at: <https://www.jmcp.org/doi/10.18553/jmcp.2020.19245> Accessed January 2026

57. Eylea (aflibercept) [prescribing information]. (2019). Regeneron Pharmaceuticals, Inc. (See also: Aflibercept in wet age-related macular degeneration.) *Therapeutic Advances in Chronic Disease*, 3(1), 11–23. Available at: <https://journals.sagepub.com/doi/10.1177/2040622312446007> Accessed January 2026
58. Brolucizumab (Beovu) [press release and label summary]. (2019, April 14). Novartis announces FDA filing acceptance and priority review of brolucizumab (RTH258). Available at: <https://www.novartis.com/news/media-releases/novartis-announces-fda-filing-acceptance-and-priority-review-brolucizumab-rth258-pa> Accessed January 2026
59. Lida T et al (2024). Neovascular age-related macular degeneration. *BMJ Open Ophthalmology*, 9(1), e001516. Available at: <https://bmjophth.bmjjournals.com/content/9/1/e001516>
60. Eye News. Available at: <https://www.eyenews.uk.com/features/ophthalmology/post/clinical-relevance-of-the-anatomic-classification-of-neovascular-age-related-macular-degeneration>. Accessed January 2026
61. Cincinelli MV et al. (2022). Vascular analysis of type 1, 2, and 3 macular neovascularization in neovascular age-related macular degeneration. *Scientific Reports*, 12, 4567. Available at: <https://pmc.ncbi.nlm.nih.gov/articles/PMC8945474/>. Accessed January 2026
62. Chawla H et al. Polypoidal Choroidal Vasculopathy. [Updated 2023 Mar 16]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan-. Available at: <https://www.ncbi.nlm.nih.gov/books/NBK567780/>. Accessed January 2026
63. Gomi, F et al. (2022). Three-year outcomes of photodynamic therapy plus ranibizumab versus aflibercept monotherapy for polypoidal choroidal vasculopathy. *PLOS ONE*, 17(6), e0269365. Available at: <https://pmc.ncbi.nlm.nih.gov/articles/PMC9581849/>. Accessed January 2026
64. Finger RP et al. (2019). Anti-VEGF intervention in neovascular age-related macular degeneration: Benefits and limitations. *Ophthalmologica*, 241(4), 183–193
65. Schmier JK et al. (2023). Understanding treatment burden of intravitreal anti-VEGF for nAMD: A systematic review. *Clinical Ophthalmology*, 17, 1629–1643.
66. Minassian DC et al (2020). Lifetime outcomes of anti-vascular endothelial growth factor therapy for neovascular AMD. *JAMA Ophthalmology*, 138(12), 1234–1242. Available at: <https://jamanetwork.com/journals/jamaophthalmology/fullarticle/2771739>
67. Eleftheriadou, M et al (2020). Long-term outcomes of anti-VEGF therapy in neovascular age-related macular degeneration. *Retina Today*. Available at: <https://retinatoday.com/articles/2021-nov-dec/long-term-outcomes-of-anti-vegf-therapy>. Accessed January 2026
68. Holz FG et al. (2023). Real-world 10-year outcomes of anti-VEGF therapy for neovascular age-related macular degeneration. *Ophthalmology*, 130(5), 513–523
69. Oubrahim, H et al. (2019). Real-world injection intervals in wet AMD under treat-and-extend regimens. *Retina Today*. Available at: <https://retinatoday.com/articles/2020-may-june/real-world-injection-intervals-in-wet-amd>. Accessed January 2026
70. Ho AC et al. (2020). Treatment burden and adherence challenges in anti-VEGF therapy. *Retina Specialist*. Available at: <https://www.retina-specialist.com/article/overcoming-antivegf-treatment-burden-and-adherence-challenge>. Accessed January 2026
71. Taipale C et al. (2021). Incomplete response to anti-VEGF therapy in neovascular AMD: Current understanding. *Progress in Retinal and Eye Research*, 82, 100904. Available at: <https://pubmed.ncbi.nlm.nih.gov/33022379/>. Accessed January 2026
72. Eleftheriadou, M., et al. (2023). Emerging therapeutic strategies for unmet need in neovascular age-related macular degeneration. *Frontiers in Pharmacology*, 14, 1136032. Available at: <https://pmc.ncbi.nlm.nih.gov/articles/PMC9942398/>. Accessed January 2026
73. Kertes PJ et al (2024). Targeting unmet needs in nAMD treatment: Durability, atrophy and service burden. *Retina Specialist*. Available at: <https://www.retina-specialist.com/article/targeting-unmet-needs-in-namd-treatment>. Accessed January 2026
74. Almony A et al. Clinical and economic burden of neovascular age-related macular degeneration by disease status: a US claims-based analysis. *J Manag Care Spec Pharm*. 2021 Sep;27(9):1260-1272. doi: 10.18553/jmcp.2021.27.9.1260. PMID: 34464210; PMCID: PMC10391196. Available at: https://glance.eyesoneyecare.com/stories/2026-01-05/does-yag-capsulotomy-increase-dr-risk/?utm_medium=oeo:infinite-scroll. Accessed January 2026
75. MacCumber MW et al. Real-World Injection Intervals in Wet AMD. *Retina Today*. Available at: <https://retinatoday.com/articles/2020-may-june/real-world-injection-intervals-in-wet-amd>. Accessed January 2026
76. Hutton DW et al. DRCR Retina Network. Cost-effectiveness of Aflibercept Monotherapy vs Bevacizumab First Followed by Aflibercept If Needed for Diabetic Macular Edema. *JAMA Ophthalmol*. 2023 Mar 1;141(3):268-274. doi: 10.1001/jamaophthalmol.2022.6142. PMID: 36729431; PMCID: PMC9896372.
77. Ciulla et al. (2022). *Ophthalmology*. *Retina*, 6(9), 796–806
78. Han P, ASRS 2024 PAT Survey.
79. Schmier, J. K et al. (2020). Real-world injection frequency and cost of ranibizumab and aflibercept for neovascular age-related macular degeneration in the United States. *Journal of Managed Care & Specialty Pharmacy*, 26(2), 229–238. Available at: <https://www.jmcp.org/doi/10.18553/jmcp.2020.19245>
80. Patel, S. N (2023). Cost-effectiveness of aflibercept monotherapy vs bevacizumab-first strategy for neovascular age-related macular degeneration. *Ophthalmology*, 130(2), 179–188. Canadian Agency for Drugs and Technologies in Health. (2015). Cost comparison table of anti-VEGF therapies for ocular conditions. Available at: <https://www.ncbi.nlm.nih.gov/books/NBK349596/>. Accessed January 2026
81. Patel, S., et al (2024). Trends in the cost per month of anti-VEGFs used to treat retinal diseases. *Investigative Ophthalmology & Visual Science*. Available at: <https://iovs.arvojournals.org/article.aspx?articleid=2794410>. Accessed January 2026
82. Bressler, N. M et al. (2024, April 9). Annual anti-VEGF injection costs are on the rise. *Eyes On Eyecare – GLANCE*. Available at: <https://glance.eyesoneyecare.com/stories/2024-04-09/annual-anti-vegf-injection-costs-are-on-the-rise/>. Accessed January 2026

83. Hutton, D. W et al (2023). Cost-effectiveness of vascular endothelial growth factor inhibitors for eye diseases. *Journal of Managed Care & Specialty Pharmacy*.
84. Stein, J. D et al (2020). Clinical and economic burden of neovascular age-related macular degeneration. *American Journal of Ophthalmology*, 214, 157–166
85. Hutton, D. W et al (2023). The role of managed care professionals in the management of neovascular age-related macular degeneration. *American Journal of Managed Care*. Available at: <https://www.ajmc.com/view/the-role-of-managed-care-professionals-in-the-management-of-neovascular-age-related-macular-degenerati>
86. Holmes, A., et al. (2023). Patient-centered economic burden of exudative age-related macular degeneration in the United States. *Clinical Ophthalmology*, 17, 407–420.
87. Brown, G. C et al (2016). Will a new low-cost option join the anti-VEGF fold? *Retina Today*. Available at: <https://retinatoday.com/articles/2016-apr/will-a-new-low-cost-option-join-the-anti-vegf-fold>
88. Pearce IP. New Indication Alert. Available at: <https://www.pearceip.law/2025/02/04/new-indication-alert-fda-approves-genentechs-susvimo-ranibizumab-for-dme/>. Accessed January 2026
89. 4DMT. Barclays Global Healthcare Conference 2025. Corporate Presentation. March 2025. Available at: <https://ir.4dmoleculartherapeutics.com/static-files/a3471ab5-20cf-4832-8114-5b5bab01f149> Accessed January 2026
90. 4DMT Molecular. Corporate Presentation. January 2026. Available at: <https://ir.4dmoleculartherapeutics.com/static-files/1f6e166f-50a5-42a4-b159-69131cc49782>. Accessed January 2026
91. Healthline. (2025, November 5). Eylea vs Eylea HD: Dosage, price, and side effects. Available at: <https://www.healthline.com/health/drugs/eylea-vs-eylea-hd> Accessed January 2026
92. Regeneron Pharmaceuticals, Inc. (2025). EYLEA HD® (aflibercept) injection 8 mg and EYLEA® (aflibercept) injection 2 mg – Dosing and administration for wet AMD, DME, and DR (HCP site). Available at: <https://eyleahdcp.com/wet-amd/about/eylea-2mg> Accessed January 2026
93. Regeneron Pharmaceuticals, Inc. (2025, January 13). FAQs about EYLEA HD, wet AMD, DME, and DR. Available at: <https://www.eyleahd.com/frequently-asked-questions> Accessed January 2026
94. American Journal of Managed Care. (2023, September 18). FDA approves higher-dose version of aflibercept. Available at: <https://www.ajmc.com/view/fda-approves-higher-dose-version-of-aflibercept> Accessed January 2026
95. Retinal Physician. (2024, April 22). Lengthening the time between treatments (review of extended-interval anti-VEGF regimens, including aflibercept 8 mg). Available at: <https://digital.retinalphysician.com/articles/lengthening-the-time-between-treatments> Accessed January 2026
96. Bayer. Annual Reports. Available at: <https://www.bayer.com/en/investors/integrated-annual-reports>. Accessed January 2026
97. Regeneron Corporate Presentation. October 2025. Available at: <https://investor.regeneron.com/static-files/79e3089c-da68-407c-8ce0-87fe9b3e3554> Accessed January 2026
98. Macugen. Summary of Product Characteristics. Available at: https://www.ema.europa.eu/en/documents/product-information/macugen-epar-product-information_en.pdf Accessed January 2026
99. Roche 2024 Results. 30th January 2025. Available at: <https://assets.roche.com/f/176343/x/63b9606d3b/irp250130.pdf> Accessed January 2026
100. Roche. YTD. September 2025 sales. Available at: <https://assets.roche.com/f/176343/x/1025ff0e1f/irp251023-a.pdf> Accessed January 2026
101. Eichenbaum DA et al. Ranibizumab port delivery system: a clinical perspective. *BMJ Open Ophthalmology*. 2022;7:e001104
102. Khanani AM et al. Continuous Ranibizumab via Port Delivery System vs Monthly Ranibizumab for Treatment of Diabetic Macular Edema: The Pagoda Randomized Clinical Trial. *JAMA Ophthalmol*. 2025;143(4):326–335
103. Goodwin. Genetech Voluntarily Recalls Susvimo. Available at: <https://www.goodwinlaw.com/en/insights/blogs/2022/10/genetech-voluntarily-recalls-susvimo-ranibizumab>. Accessed January 2026
104. Ophthalmology Times. Genetech receives FDA approval to relaunch Susvimo. Available at: <https://www.ophthalmologytimes.com/view/genetech-receives-fda-approval-to-relaunch-susvimo> Accessed January 2026
105. Sharma A et al. Approved biosimilar ranibizumab—a global update. *Eye (Lond)*. 2023 Feb;37(2):200–202. doi: 10.1038/s41433-022-02246-5. Epub 2022 Sep 16. PMID: 36114290; PMCID: PMC9873906
106. FDA Approves Samsung Bioepis and Biogen's BYOOVIZ™ (SB11), LUCENTIS® Biosimilar (ranibizumab-nuna). 2022. Available at: <https://investors.biogen.com/news-releases/news-release-details/fda-approves-samsung-bioepis-and-biogens-byoovitzm-sb11>. Accessed January 2026
107. FujiPharma. Press Release. Marketing Approval for Three Biosimilars. September 19th 2025. Available at: https://www.fujipharma.jp/english/_upload/EN_fujipharma_BS_20250919.pdf. Accessed January 2026
108. Khachigian LM et al. (2023). Emerging therapeutic strategies for unmet need in neovascular age-related macular degeneration. *Journal of Translational Medicine*, 21(1), 133
109. Iglicki, M et al. (2021). Longer-acting treatments for neovascular age-related macular degeneration—present and future. *Eye*, 35(4), 1111–1116
110. Holekamp, N. M. (2019). Review of neovascular age-related macular degeneration treatment options. *American Journal of Managed Care*, 25(10), S1–S10
111. Wykoff CC et al. (2018). Optimizing anti-VEGF treatment outcomes for patients with neovascular age-related macular degeneration. *Journal of Managed Care & Specialty Pharmacy*, 24(2-a Suppl), S3–S15.

112. Khanani, A. M et al. (2020). Reducing treatment burden in neovascular AMD. New York Eye and Ear Infirmary of Mount Sinai, CME monograph. [Original Release: November 1, 2020; Expiration: November 30, 2021]
113. Ricci, F et al. (2020). Neovascular age-related macular degeneration: Therapeutic management and new-upcoming approaches. International Journal of Molecular Sciences, 21(7), 1–40. <https://doi.org/10.3390/ijms21072495>
114. Daini, V et al. (2021). Evolution of treatment paradigms in neovascular age-related macular degeneration: A review of real-world evidence. British Journal of Ophthalmology, 105(11), 1475–1479.
115. Guimaraes TACD et al. Gene therapy for neovascular age-related macular degeneration: rationale, clinical trials and future directions. British Journal of Ophthalmology 2021;105:151-157
116. Brittni A. Scruggs et al. Retinal gene therapy using epiretinal AAV-containing fibrin hydrogel implants. Sci. Adv. 11, eadv7922(2025). DOI:10.1126/sciadv.adv7922
117. Ding K et al. AAV8-vectored suprachoroidal gene transfer produces widespread ocular transgene expression. J Clin Invest. 2019 Aug 13;129(11):4901-4911.
118. Nagiel AN et al. Drug Delivery Beyond the Intravitreal Space. Available at: <https://retinatoday.com/articles/2022-jan-feb/drug-delivery-beyond-the-intravitreal-space> Accessed January 2026
119. Xu D et al. New Developments in Suprachoroidal and Subretinal Drug Delivery Technology. Available at: <https://digital.retinalphysician.com/articles/new-developments-in-suprachoroidal-and-subretinal-drug-delivery-technology> Accessed January 2026
120. Guimaraes TACD et al. Gene therapy for neovascular age-related macular degeneration: rationale, clinical trials and future directions. British Journal of Ophthalmology 2021;105:151-157
121. Medline Plus. Intravitreal Injection. Available at: <https://medlineplus.gov/ency/article/007629.htm>. Accessed January 2026
122. Lam LA et al. Task Force on Intravitreal Injection Supplemental Services. Intravitreal Injection Therapy: Current Techniques and Supplemental Services. J Vitreoretin Dis. 2021 Jul 22;5(5):438-447
123. Mulyukov Z et al. Neovascular Age-Related Macular Degeneration: A Visual Acuity Model of Natural Disease Progression and Ranibizumab Treatment Effect. CPT Pharmacometrics Syst Pharmacol. 2018 Oct;7(10):660-669
124. Okeagu CU et al. Age-Related Eye Disease Study 2 Research Group. Principal Cause of Poor Visual Acuity after Neovascular Age-Related Macular Degeneration: Age-Related Eye Disease Study 2 Report Number 23. Ophthalmol Retina. 2021 Jan;5(1):23-31. doi: 10.1016/j.oret.2020.09.025. Epub 2020 Oct 10. PMID: 33045457; PMCID: PMC7796863
125. Minami, S et al. Benefits of afibercept treatment for age-related macular degeneration patients with good best-corrected visual acuity at baseline. Sci Rep 8, 58 (2018). Available at: <https://doi.org/10.1038/s41598-017-18255-4>. Accessed January 2026
126. Regillo CD et al. Clinical Trial Designs in WetAMD. A brief Review. Available at: <https://retinatoday.com/articles/2023-may-june/clinical-trial-designs-in-wet-amd-a-brief-review>. Accessed January 2026
127. Browning DJ et al. Diabetic Retinopathy Clinical Research Network. Optical coherence tomography measurements and analysis methods in optical coherence tomography studies of diabetic macular edema. Ophthalmology. 2008 Aug;115(8):1366-71
128. Gemayel M. Retinal OCT Biomarkers for clinicians and clinical researchers. Available at: <https://retinalphysician.com/issues/2021/april/retinal-oct-biomarkers-for-clinicians-and-clinical-researchers/>. Accessed January 2026
129. Arya B et al. WetAMD gene therapy: success depends on a comprehensive development strategy. Available at: <https://www.parexel.com/insights/blog/wet-amd-gene-therapy-success-depends-on-a-comprehensive-development-strategy>. Accessed January 2026
130. Ellit M et al. Anti-VEGF and Beyond. Expanding Therapeutic Options for WetAMD. Available at: <https://retinatoday.com/articles/2025-nov-dec/anti-vegf-and-beyond-expanding-therapeutic-options-for-wet-amd> Accessed January 2026
131. Jung E et al. The future of WetAMD therapeutics. November/December 2023. Retina Today. Available at: <https://retinatoday.com/articles/2023-nov-dec/the-future-of-wet-amd-therapeutics>. Accessed January 2026
132. Barthelemy N et al. Gene Therapy for Wet Age-Related Macular Degeneration. Bioengineering (Basel). 2025 Oct 2;12(10):1072
133. Regillo C et al. Modern Retina. The gene therapy shift. A closer look at the science powering next generation retinal treatments. December 8th 2025
134. Wong, W. L., et al. (2025). Gene therapy for age-related macular degeneration. Progress in Retinal and Eye Research, 99, 101190.
135. Mayo Clinic. (2023, August 6). Potential one-time gene therapy treatment for wet age-related macular degeneration.
136. Calton MA et al. Design and Characterization of a Novel Intravitreal Dual-Transgene Genetic Medicine for Neovascular Retinopathies. Invest Ophthalmol Vis Sci. 2024 Dec 2;65(14):1
137. McClements ME et al. Gene Therapies in Clinical Development to Treat Retinal Disorders. Mol Diagn Ther. 2024 Sep;28(5):575-591
138. 4D Molecular Therapeutics. (2025, February 8). 4DMT presents positive 52-week results from Phase 2b cohort of PRISM wet AMD study and long-term durability data supporting 4D-150 4FRONT global Phase 3 program [Press release]. GlobeNewswire.
139. 4D Molecular Therapeutics. (2025, June 22). Ophthalmic diseases: 4D-150 program overview. Retrieved from Available at: <https://4dmoleculartherapeutics.com>
140. 4D Molecular Therapeutics. (2024, September 17). 4DMT shares data from Phase 1/2 PRISM clinical trial, 4FRONT Phase 3 study design. Modern Retina.
141. 4D Molecular Therapeutics. (2025, December 17). 4DMT announces Phase 2 PRISM interim results for intravitreal 4D-150 in wet AMD. Ophthalmology 360 / Modern Optometry News.

142.4D Molecular Therapeutics. (2025, November 10). 4DMT presents positive 52-week results from Phase 2b cohort of PRISM wet AMD study. *Modern Optometry News*.

143. Eyewire News. (2025, October 2). First patients enrolled in 4DMT's Phase 3 clinical trial evaluating 4D-150 in wet AMD. *Eyewire News*.

144. Kay, C., et al. (2025). Interim results from the Phase 2b population extension cohort of the PRISM trial of 4D-150 in wet age-related macular degeneration. *Investigative Ophthalmology & Visual Science*.

145. National Library of Medicine. (2025). NCT06864988: A Phase 3, randomized, double-masked, active-controlled trial of a single intravitreal injection of 4D-150 in adults with macular neovascularization secondary to AMD. *ClinicalTrials.gov*.

146. Ophthalmology Management. (2025, August 10). 4DMT presents positive 60-week results from 4D-150 SPECTRA clinical trial in DME. *Ophthalmology Management*.

147. Eyes On Eyecare. (2025, February 13). Positive 52-week data supports 4DMT's wet AMD gene therapy 4D-150. *Eyes On Eyecare*

148. Regenxbio. Corporate Website. Available at: Available at: <https://www.regenxbio.com/therapeutic-programs/rgx-314/>. Accessed January 2026

149. Regenxbio. Corporate Presentation. Available at: Available at: <https://ir.regenxbio.com/static-files/a7f4f464-cba3-412b-88b1-02de8bf70faf> Accessed January 2026

150. AbbVie. (2025, January 13). AbbVie and REGENXBIO announce updates on the ABBV-RGX-314 clinical program. *AbbVie News Center*.

151. REGENXBIO Inc. (n.d.). ABBV-RGX-314 for retinal diseases. *REGENXBIO Therapeutic Programs*. Retrieved January 14, 2026, from Available at: <https://www.regenxbio.com/therapeutic-programs/rgx-314/>

152. Surabgene lomparvovec – REGENXBIO. (n.d.). *AdisInsight* (Drug profile 800049255). Springer Nature. Retrieved January 14, 2026, from Available at: <https://adisinsight.springer.com/drugs/800049255>

153. Campochiaro, P. A., & Heier, J. S. (2024). Gene therapy for neovascular age-related macular degeneration. *Advanced Science*. Advance online publication. Available at: <https://pubmed.ncbi.nlm.nih.gov/38554726/>

154. Compositions for treatment of wet age-related macular degeneration, U.S. Patent Application No. US20210093734A1. (2021). Google Patents. Available at: <https://patents.google.com/patent/US20210093734A1/en>

155. Campochiaro, Peter A et al. Gene therapy for neovascular age-related macular degeneration by subretinal delivery of RGX-314: a phase 1/2a dose-escalation study. *The Lancet*, Volume 403, Issue 10436, 1563 – 1573

156. Campochiaro PA et al. Gene Therapy for Neovascular AMD. Available at: Available at: https://www.regenxbio.com/getmedia/1ddb1b73-e398-4366-999d-4ce04562c7dd/RGX-314-AAO2022-SR-LTFU_Peter-C_FINAL_.pdf?ext=.pdf. Accessed January 2026

157. Ho A et al. Subretinal Delivery of RGX-314 for Neovascular AMD. End of Phase 1/2a study results. Available at: https://www.regenxbio.com/getmedia/4264be27-65ce-47d3-ae65-68f01368bc2f/RGX-314_Ph1-2a_data_Allen-Ho_Retina_Society_Oct-2021.pdf?ext=.pdf. Accessed January 2026

158. Adverum Corporate Website. Available at: Available at: <https://adverum.com/pipeline/#>. Accessed January 2026

159. Fighting Blindness. (2025, February 27). Adverum advancing wet AMD gene therapy into phase 3 clinical trials. Available at: Available at: <https://www.fightingblindness.org/news/adverum-advancing-wet-amd-gene-therapy-into-phase-3-clinical-trials-1894>. Accessed January 2026

160. Adverum Biotechnologies. (2018). ADVM-022 intravitreal gene therapy for wet AMD (OPTIC) (Identifier NCT03748784).

161. Adverum Biotechnologies. (n.d.). ADVM-022 intravitreal gene therapy for wet AMD (OPTIC) – Study details. *ClinicalTrials.gov* / study record and associated registry materials.

162. Clinical gene therapy trial tracker. (2024). NCT05536973: Safety and efficacy of ADVM-022 in subjects with neovascular (wet) AMD. *FDAAA TrialsTracker*.

163. Adverum Biotechnologies. 2022, September 15). First patient dosed in wet AMD gene therapy LUNA trial. *CGTLive*. Available at: <https://www.cgtlive.com/view/first-patient-dosed-wet-amd-gene-therapy-luna-trial>

164. Adverum Biotechnologies. (2025). Efficacy and safety study of ixoherogene soroparvovec (Ixo-vec) in neovascular age-related macular degeneration (ARTEMIS) (ClinicalTrials.gov Identifier NCT06856577)

165. Adverum Biotechnologies. (2022). ADVM-022 (ixoherogene soroparvovec) intravitreal gene therapy for neovascular AMD: OPTIC trial update [Conference presentation PDF]. Available at: <https://adverum.com/wp-content/uploads/2022/11/ADVM-Retina-Society-OPTIC-2022.pdf> Accessed January 2026

166. Liu, E., et al. (2023). Safety and efficacy of ixoherogene soroparvovec in neovascular age-related macular degeneration: 104-week results from the OPTIC trial. *eClinicalMedicine*. Available at: [https://www.thelancet.com/journals/eclim/article/PIIS2589-5370\(23\)00571-0/fulltext\[2\]](https://www.thelancet.com/journals/eclim/article/PIIS2589-5370(23)00571-0/fulltext[2]) Accessed January 2026

167. Wet AMD Gene Therapy Demonstrates Promising Safety and Efficacy in Phase 1 Trial. (2022, November 7). *CGTLive*. Available at: <https://www.cgtlive.com/view/wet-amd-gene-therapy-demonstrates-promising-safety-efficacy-phase-1-trial> Accessed January 2026

168. Health Research Authority. (2023, June 28). LUNA – Study to assess safety and efficacy of ADVM-022 in subjects with neovascular (wet) age-related macular degeneration. Available at: <https://www.hra.nhs.uk/planning-and-improving-research/application-summaries/research-summaries/luna/> Accessed January 2026

169. SCGE Platform. (2025). Gene therapy trial report: NCT05536973. Somatic Cell Genome Editing Program. Available at: <https://scge.mcw.edu/platform/data/clinicalTrials/report/NCT05536973> Accessed January 2026

170. Adverum Biotechnologies. (2025, March 3). Adverum Biotechnologies initiates phase 3 ARTEMIS trial evaluating ixoberogene soroparvovec for wet AMD. Ophthalmology Times. Available at: <https://www.ophthalmologytimes.com/view/adverum-biotechnologies-initiates-phase-3-artemis-trial-evaluating-ixoberogene-soroparvovec> Accessed January 2026
171. Retinal Physician. (2025, March 6). Adverum initiates phase 3 ARTEMIS study. Available at: <https://retinalphysician.com/news/2025/adverum-initiates-artemis-study/> Accessed January 2026 Identifier NCT06856577
172. Wykoff CC et al. Ixo-vec Gene Therapy for nAMD: clinical progress from the LUNA Phase 2 Trial. Available at: Available at: https://adverum.com/wp-content/uploads/FLORETINA-2025_LUNA-2-year-Results.pdf. Accessed January 2026
173. Paraxel. WetAMD genetherapy: success depends on a comprehensive development strategy. Available at: <https://www.parexel.com/insights/blog/wet-amd-gene-therapy-success-depends-on-a-comprehensive-development-strategy> Accessed January 2026
174. Sanofi Corporate Press Release. September 11th 2025. Available at: <https://www.sanofi.com/en/media-room/press-releases/2025/2025-09-11-05-00-00-3148313> Accessed January 2026
175. CGTlive. News Article. Sanofi's Neovascular Age-Related Macular Degeneration Gene Therapy SAR402663 Garners FDA Fast Track Designation. Available at: <https://www.cgtlive.com/view/sanofi-neovascular-age-related-macular-degeneration-gene-therapy-sar402663-fda-fast-track-designation> Accessed January 2026
176. Huidagene Corporate Website. Available at: <https://www.huidagene.com/>. Accessed January 2026
177. Eyewire. 4D Molecular Therapeutics Reports Positive Long-Term Phase 1/2 PRISM Data in Wet AMD. Available at: <https://eyewire.news/news/4d-molecular-therapeutics-reports-positive-long-term-phase-1-2-prism-data-in-wet-amd?c4src=article:infinite-scroll> Accessed January 2026
178. Khanani AM et al. Safety and efficacy of ixoberogene soroparvovec in neovascular age-related macular degeneration in the United States (OPTIC): a prospective, two-year, multicentre phase 1 study. *eClinicalMedicine*, Volume 67, 102394
179. Eyeson, Regenxbio shares 2-year data on gene therapy injection for WetAMD. March 29th 2024. Available at: <https://glance.eyesoneyecare.com/stories/2024-03-29/regenxbio-shares-2-year-data-on-one-time-injected-gene-therapy-for-wet-amd/> Accessed January 2026
180. Modern Retina. September 18th 2024. Available at: <https://www.modernretina.com/view/4dmt-shares-data-from-phase-1-2-prism-clinical-trial-4front-phase-3-study-design> Accessed January 2026
181. Modern Retina. News Article. What you missed at AAO 2024: ABBV-RGX-314 for wet AMD Available at: <https://www.modernretina.com/view/what-you-missed-at-aao-2024-abbv-rgx-314-for-wet-amd> Accessed January 2026
182. REGENXBIO Presents Positive Data from the Phase II Study of Subretinal ABBV-RGX-314 in Patients with Bilateral Wet AMD at AAO 2024. REGENXBIO Inc. October 21, 2024. Accessed November 21, 2024. Available at: <https://ir.regenxbio.com/news-releases/news-release-details/regenxbio-presents-positive-data-phase-ii-study-subretinal-abbv> Accessed January 2026
183. CGT Live. 4D Molecular Therapeutics' Wet AMD Gene Therapy 4D-150 Reduces Need for anti-VEGF Injections,. July 18th 2024. Available at: <https://www.cgtlive.com/view/4d-molecular-therapeutics-wet-amd-gene-therapy-4d-150-reduces-antivegf-injections> Accessed January 2026
184. Retina International. REGENXBIO Update on RGX-314 treatment for WetAMD. January 5th 2021. Available at: <https://retina-international.org/regenxbio-update-on-rgx-314-treatment-for-wet-amd/> Accessed January 2026
185. FirstWord Pharma. REGENXBIO Reports Fourth Quarter and Full Year 2024 Financial Results and Recent Operational Updates. March 13th 2025. Available at: Available at: <https://firstwordpharma.com/story/5942096> Accessed January 2026
186. REGENXBIO. (2026, January 10). REGENXBIO highlights key 2026 catalysts and announces positive long-term functional outcomes [Press release].
187. REGENXBIO. (2025, October 7). REGENXBIO completes enrollment in ATMOSPHERE and ASCENT trials of SURA VEC in wet AMD.
188. AbbVie & REGENXBIO. (2025, January 13). AbbVie and REGENXBIO announce updates on the ABBV RGX 314 clinical program.
189. 4D Molecular Therapeutics. (2025, June 26). Form 8 K [Current report].
190. 4D Molecular Therapeutics. (2025, July 2). 4DMT announces accelerated 4D 150 phase 3 development in wet AMD [Press release].
191. United States Census. International Database (IDB). Available at: Available at: <https://www.census.gov/programs-surveys/international-programs/about/ida.html> Accessed January 2026
192. Rein DB et al. Prevalence of Age-Related Macular Degeneration in the US in 2019. *JAMA Ophthalmol*. 2022 Dec 1;140(12):1202-1208.
193. Brown GC et al. The burden of age-related macular degeneration: a value-based medicine analysis. *Trans Am Ophthalmol Soc*. 2005;103:173-84; discussion 184-6
194. Saunier V et al. Incidence of and Risk Factors Associated With Age-Related Macular Degeneration: Four-Year Follow-up From the ALIENOR Study. *JAMA Ophthalmol*. 2018 May 1;136(5):473-481.
195. Robinson K et al. Discordance Among Patients and Ophthalmologists Regarding the Burden of Intravitreal Injections. *Clin Ophthalmol*. 2025 Aug 8;19:2637-2645
196. Baek, S.K et al. Increase in the Population of Patients with Neovascular Age-Related Macular Degeneration Who Underwent Long-Term Active Treatment. *Sci Rep* 9, 13264 (2019). Available at: <https://doi.org/10.1038/s41598-019-49749-y>
197. Reitan G et al. Through the Eyes of Patients: Understanding Treatment Burden of Intravitreal Anti-VEGF Injections for nAMD Patients in Norway. *Clin Ophthalmol*. 2023 May 25;17:1465-1474

198. Ziemssen F et al. A model to quantify the influence of treatment patterns and optimize outcomes in nAMD. *Sci Rep* 12, 2789 (2022)
199. Mettu PS et al. Incomplete response to Anti-VEGF therapy in neovascular AMD: Exploring disease mechanisms and therapeutic opportunities. *Prog Retin Eye Res*. 2021 May;82:100906
200. Gale R et al. Health technology assessment of new retinal treatments; the need to capture healthcare capacity issues. *Eye (Lond)*. 2022 Dec;36(12):2236-2238
201. American Academy of Ophthalmology. (2025). Age-related macular degeneration epidemiology and clinical presentation. American Academy of Ophthalmology Guidelines.
202. Baurnal, C. R et al (2024). Anti-VEGF therapy injection protocols for age-related macular degeneration. *Retinal Physician Society Clinical Guidelines*, 15(3), 234-248.
203. Centers for Medicare & Medicaid Services. (2026). Ophthalmology service reimbursement rates: Clinical visits, OCT imaging, and monitoring costs. *Medicare Physician Fee Schedule*.
204. FDA Center for Drug Evaluation and Research. (2026). Aflibercept (Eylea) intravitreal injection: US market pricing and reimbursement data, 2025–2026. *Food and Drug Administration Product Information*.
205. International Society for Pharmacoeconomics & Outcomes Research. (2023). Guidelines for health economic evaluation of therapeutic interventions. *ISPOR Methodological Standards*, 26(4), 412-428.
206. National Institutes of Health. (2025). Life expectancy and disease management outcomes in elderly populations (age >65 years). *NIH Epidemiological Database*.
207. Sharma, S et al (2024). Gene therapy efficacy for inherited retinal disease: 13-year clinical trial outcomes. *Investigative Ophthalmology & Visual Science*, 65(8), 4521-4535.
208. Zarbin, MA et al (2023). Bilateral age-related macular degeneration: Prevalence, progression, and treatment considerations. *Journal of Retinal and Vitreous Diseases*, 143(5), 892-907
209. Avorn, J et al (2019). Comparison of United States and international ophthalmic drug pricing. *Ophthalmology*, 126(8), 1180–1186
210. U.S. Department of Health and Human Services, Office of the Assistant Secretary for Planning and Evaluation. (2020). Medicare FFS Part B and international drug prices:
211. A comparison of selected drugs in the U.S. and six other countries (Issue Brief).
212. National Institute for Health and Care Excellence. (2017). Aflibercept for treating choroidal neovascularisation (Technology appraisal guidance TA486). NICE.
213. Xie, J et al (2023). Cost-effectiveness of aflibercept monotherapy vs bevacizumab first-line therapy for neovascular age-related macular degeneration. *Ophthalmology*, 130(2), 147–156
214. AdisInsight/Nature Publishing Group. (2019). Comparison of ophthalmic medication prices between the United States and Australia. *Clinical and Experimental Ophthalmology*, 47(2), 245–252

TERMS and CONDITIONS:

VacZine Analytics – a trading division of Assay Advantage Ltd UK Company Number: 5807728 (Herein referred to as “The Company”). (Herein [enter client name] to as “The Client”).

1. All Rights Reserved. This finished research product is a licensed product. It may not be reproduced, stored in a retrieval system or transmitted in any form without the written permission of the Company **VacZine Analytics** (of division of Assay Advantage Ltd).
2. The license granted by the Company to the Client will be non-exclusive, non-transferable and should only be used for the Client business purposes at the agreed Client sites/location in accordance with this agreement. The Client will have no ownership rights over the research product.
3. Invoicing will **100%** after submission of the deliverables (.pdf) and (.xls) to the Client.
4. If not purchased online invoices are payable within **thirty days** of the invoice date.
5. All proposals are quoted in **\$USD dollars or £GBP or €uro** and invoices are to be settled in the same currency.
6. The Company agrees not to disclose to any third-party confidential information acquired while providing the research product listed without the prior written consent of the Client. Exception occurs when the information is already in the public domain or when disclosure is necessary to help the Company's employees and agents with the performance of the Company's obligations to achieve satisfactory completion of the project and approved in writing by the Client.
7. Force Majeure: The Company will not be liable for any delay or failure to perform any obligation under this Agreement insofar as the performance of such obligation is prevented by an event beyond our reasonable control, included by not limited to, earthquake, fire, flood or any other natural disaster including pandemic, labour dispute, riot, revolution, terrorism, acts of restraint of government or regulatory authorities, failure of computer equipment and failure or delay of sources from which data is obtained.
8. Please also refer to Master **TERMS and CONDITIONS** available upon request.

VacZine Analytics

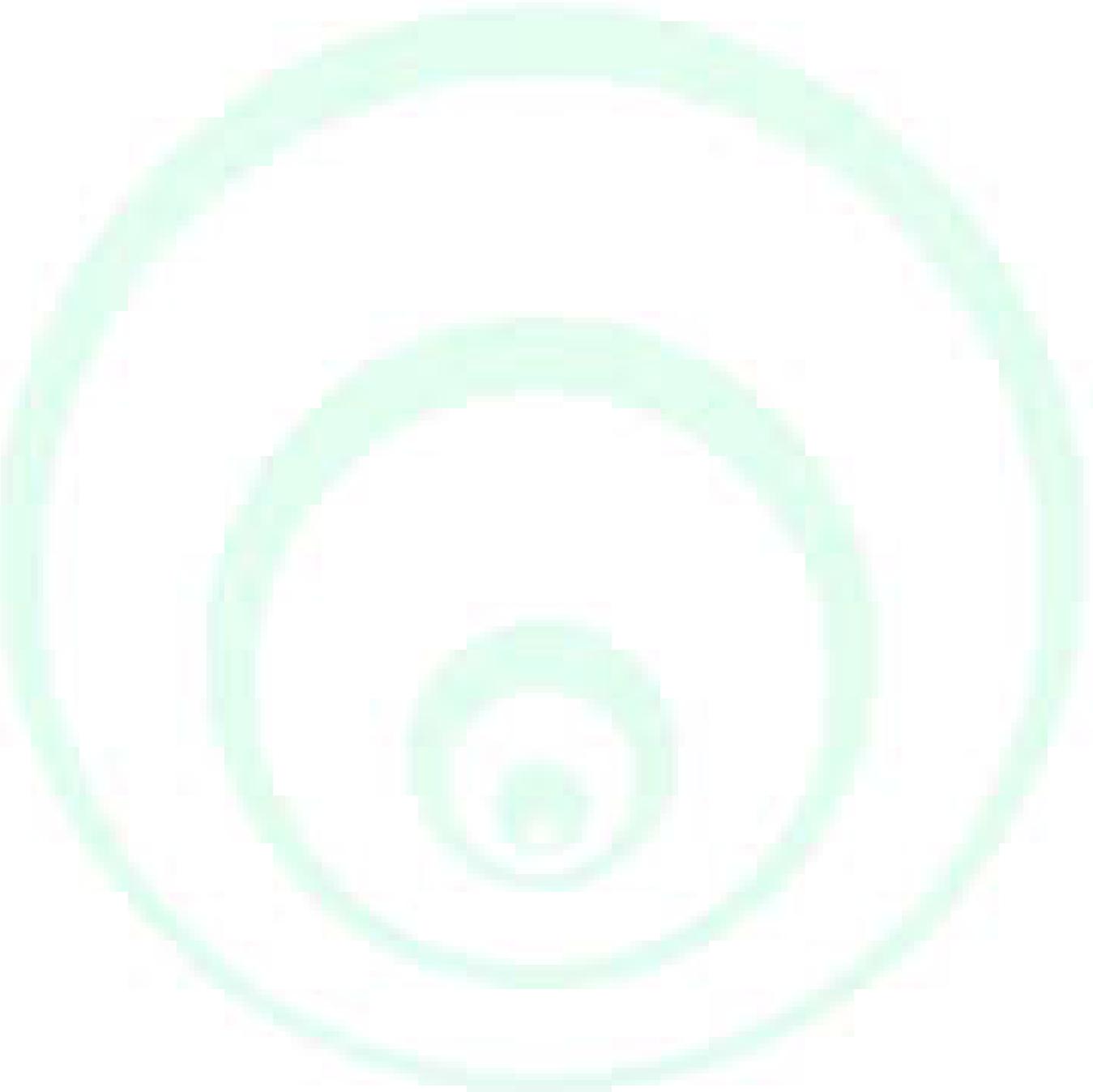
A division of Assay Advantage Ltd
Warren (Carlton) House
Bells Hill
Bishops Stortford
Herts
CM23 2NN
United Kingdom
Tel: +44 (0) 1279 927049
E-mail: info@vacZine-analytics.com

About VacZine Analytics:

VacZine Analytics is an established strategic research agency based in the United Kingdom. Its aim is to provide disease and commercial analysis for the vaccine industry and help build the case for developing new vaccines and biologics.

For more information, please visit our website www.vacZine-analytics.com

VacZine Analytics ® is a trading division of Assay Advantage Ltd, UK Company Number: 5807728
VacZine Analytics ® and "the spiral logo" are UK Registered Trademarks, 2009



Since 2007

Bringing life to vaccine strategy...

www.vacZine-analytics.com

Carlton House, Bells Hill, Bishops Stortford, Herts CM23 2NN, United Kingdom Tel. +44(0)1279 927049 e-mail: info@vacZine-analytics.com

Bringing life to vaccine strategy...

www.vaczine-analytics.com

Carlton House, Bells Hill, Bishops Stortford, Herts CM23 2NN, United Kingdom Tel. +44(0)1279 927049 e-mail: info@vaczine-analytics.com